Mark schemes

Q1.

(a)	Current model includes: neutrons <u>and</u> protons Rutherford model does not include neutrons and protons	1	
	Current model shows electrons in different energy levels/orbitals Rutherford model does not show electrons in different orbitals/energy levels Allow 1 st energy level only holds 2 electrons		
(b)	M1: ¹¹² Sn ⁺	1	
	M2 missing abundance = 30.84%		
	If M2 missing then allow M3 if denominator = 69.16	1	
	$RAM = \frac{(112 \times 22.41) + (114 \times 11.78) + (117 \times 34.97) + (120 \times 30.84)}{100}$	1	
	M4 RAM = <u>116.5</u> answer must be to 1dp Allow M4 ecf		
		1	[6]
Q2. D	$X(g)$ + $H^{\scriptscriptstyle +} ightarrow XH^{\scriptscriptstyle +}(g)$		[1]
Q3. A	1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d³		[1]
Q4. D	³⁴ ₁₆ S		[1]
Q5.			

С

Silicon

[1]

Q6.

(a) <u>Number</u> of protons + neutrons (in the nucleus of the atom) Do not allow reference to mass or average Ignore references to C-12 being 12

1

1 1

1

1

1

	Number of protons	Number of neutrons	Number of electrons
⁴⁶ Ti	22	24	22
⁴⁹ Ti ²⁺	22	27	20

Mark as rows

(c) Let ⁴⁹Ti be y

$$M1 47.8 = \frac{(46 \times 2y) + (47 \times 2y) + (48 \times (100 - 5y)) + (49 \times y)}{100}$$

$$47.8 = \frac{235y + 4800 - 240y}{100}$$

100
Allow

$$\frac{(46 \times 2) + (47 \times 2) + (48 \times n) + 49}{(5 + n)}$$

M2 5y = 20 OR y = 4 M2 0.2n =4 or n=20

M3 abundance of
$${}^{46}\text{Ti} = 8\%$$

M3 % ${}^{46}\text{Ti} = \frac{2}{25} \times 100 = 8\%$

[6]

Q7.

С

Se²⁻

[1]

Q8.

(a) The average mass of an atom of an element

			(Weighted) average mass of all isotopes of an element	1
	Con	npare	d to $1/12^{th}$ the mass of an atom of carbon-12	1
(b)	R.A.	.M. =	<u>(82 x 6) + (83 x 1) + (84 x 28) + (86 x 8)</u> 43	
			M1 for working	1
		=	3615 / 43 84.1	
			<i>M2</i> for answer to 1 decimal place 36.2 scores 1/2	1
(c)	M1	m =	(84/1000)/6.02 x 10 ²³ (= 1.395 x 10 ⁻²⁵ kg) Alternative method M1 : m = (84/1000)/6.02 x 10 ²³ (= 1.395 x 10 ⁻²⁵ kg)	
	M2	V ²	= $2\text{ke/m} = 2 \times (4.83 \times 10^{-16}) / (1.395 \times 10^{-25})$ M2 : $d^2 = 2 \text{ ke } t^2/m$	
	М3	v	= $\sqrt{(6924731183)}$ = 83214.97 M3 : $d^2 = 2 \times (4.83 \times 10^{-16}) \times (1.73 \times 10^{-5})^2 / 1.395 \times 10^{-25} d^2 = 2.07$	
	М4	d	= v x t = 83214.97 x 1.72×10^{-5} = 1.43 (m) M4 = 1.44 (m) Allow answers in range 1.43 – 1.44 m If m not converted to kg, then d = 0.045 m for max 3	4 [8]
Q9.				
U			⁴ Li	

Q10.

B

 $1s^22s^22p^4$

[1]

1

[1]

Q11.

(a) <u>Average / mean mass of 1 atom (of an element)</u>

1

1/12 mass of one atom of ¹²C

If moles and atoms mixed, max = 1 Mark top and bottom line independently. All key terms must be present for each mark.

OR

<u>Average / mean mass of atoms of an element</u> 1/12 mass of one atom of ¹²C

OR

<u>Average / mean mass of atoms of an element x 12</u> mass of one atom of $^{12}\mbox{C}$

OR

(Average) mass of one mole of atoms 1/12 mass of one mole of ¹²C

OR

(Weighted) average mass of all the isotopes 1/12 mass of one atom of ¹²C

OR

Average mass of an atom/isotope compared to/relative to C-12 on a scale in which an atom of C-12 has a mass of 12

This expression = 2 marks

(b) M1 % of ${}^{50}Cr$ and ${}^{53}Cr = 13.9\%$

Let % of ${}^{53}Cr = x\%$ and Let % of ${}^{50}Cr = (13.9 - x)\%$ If x used for ${}^{50}Cr$ and ${}^{53}Cr$ or x and y, max 2 marks = **M1** and **M4** Alternative **M2** Let % of ${}^{53}Cr = (13.9\%-x)\%$ and % of ${}^{50}Cr = x\%$

1

1

$$M2 \quad 52.1 = \frac{50(13.9 - x) + (52 \times 86.1) + 53(x)}{100}$$

OR

3x = 37.8

 $M2 52.1 = \frac{53(13.9 - x) + (52 x 86.1) + 50x}{100}$ OR 3x = 3.9

M3 x = % of ⁵³Cr = 12.6%

			1
	M4	% of ⁵⁰ Cr = 1.3%	
		M4 = M1 - M3	
			1
(c)	M1	(Same) number of protons <u>OR</u> electrons	
		Do not allow same electronic configuration for M1	1
	Mo	(Different) number of neutrons	
	IVIZ		1
(d)	M1	(lons will interact with and) be accelerated (by an electric field)	
()		Allow (ions) accelerated to a negative plate	
		Do not allow magnetic field	
			1
	M2	lons create a current when hitting the detector OR ions create a	
		Allow (ions) can be detected	
			1
(e)	M1	Mass of ion = 8.8. x 10 ⁻²⁶ kg	
(-)		M1 Mass of ion in kg	
			1
		$v^2 = 2KE = v^2 = 2 \times 1.102 \times 10^{-13}$ (= 2.504 x 10 ¹²)	
	M2	m 8.8. x 10 ⁻²⁶	
		M2 Rearrangement	
		Alternative $M2^{v} = \sqrt{\frac{2KE}{m}}$	
			1
		$v = \sqrt{(2 \times 1.102 \times 10^{-13})} = 1.58 \times 10^{6} (\text{ms}^{-1})$	
	М3	8.8. x 10 ⁻²⁶	
		M3 : Calculating v by taking \sqrt{v}	
			1
		v = d	
	M4	\overline{t}	
		M4 : Recall of $v = d/t$	1
			1
	M5	$t = 7.9(0) \times 10^{-7}$ (s) (2sf or more)	
		wo: Calculating t	1
	Alte	mative	
	М1	Mass of Ion = $8.8. \times 10^{-26}$ kg	

	M1 Mass of ion in kg	1	
	M2 $KE = \frac{md^2}{2t^2} \text{ or } v = \frac{d}{t}$ $M2 \text{ Recall of } v = \frac{d}{t}$	1	
	M3 $t^2 = \frac{md^2}{2KE} OR \frac{8.8 \times 10^{-26} \times 1.25^2}{2 \times 1.102 \times 10^{-13}}$ M3 Rearrangement	1	
	M4 $t^2 = 6.24 \times 10 - 13$ M4: Correct calculation to get t^2	1	
	M5 $t = 7.9(0) \times 10^{-7}$ (s) (2sf or more) M5 : Calculating t by taking square root of M4 Allow answers consequential on incorrect M1 If mass in g calculated = 8.8. $\times 10^{23}$, then $t = 2.5 \times 10^{-5}$ s (4 marks)	1	[15]
Q12. B			[1]
Q13. (a)	(Sample is) dissolved (in a volatile solvent) Allow named solvent (eg water/methanol)		
	(Injected through) needle/nozzle/capillary at high voltage/positively charged Ignore pressure		
	Each molecule/particle gains a proton/H ⁺		

Allow M3 from a suitable equation (ignore state symbols) Do not allow atoms gain a proton for M3 Ignore references to electron gun ionisation Mark each point independently

(b) $C_3H_6O_2N^+$ / $C_3H_5O_2NH^+$ Must be charged

1

1

(c)	$Ge(g) + e^- \rightarrow Ge^+(g) + 2 e^-$		
	OR		
	Ge(g) → Ge+(g) + e [_] State symbols essential		
(d)	M1 v = length/t = 0.96 / 4.654×10^{-6}		
	v = 206274 m s ⁻¹		
	$m = 2KE/v^2$		
	M1 = working (or answer)	1	
	M2 mass of one ion = 1.146 × 10 ⁻²⁵ kg		
	M2 = answer conseq on M1	1	
	M3 mass of 1 mole ions = $1.146 \times 10^{-25} \times 6.022 \times 10^{23} = (0.06901 \text{ kg})$		
	$M3 = M2 \times 6.022 \times 10^{23}$	1	
	M4 = 69(.01) g		
	M4 = M3 × 1000		
	M3/M4 could be in either order	1	
	M5 mass number = 69		
	<i>M5</i> must have whole number for mass no	1	[10]

Q14.

This question is marked using Levels of Response.		
Level 3: ALL Stages with matching justifications		
All stages are covered and the explanation of each stage is generally correct and virtually complete.	5-6	
Answer is well structured with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms.	marks	
Level 2: TWO Stages with matching justifications OR THREE Stages with incomplete justifications.		
All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.	marks	

Answer shows some attempt at structure Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points.	
Some minor errors in use of technical terms.	
Level 1: ONE Stage with matching justification OR TWO Stages with incomplete justifications	
Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete.	1-2 marks
Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.	
Answer may contain valid points which are not clearly linked to an argument structure. Errors in the use of technical terms.	
Insufficient correct chemistry to gain a mark.	0 marks

Indicative Chemistry Content

Stage 1: General Trend (Li \rightarrow Ne)

- 1a. 1st IE increases
- 1b. More protons/increased nuclear charge
- 1c. Electrons in same energy level / shell
- 1d. No extra/similar shielding
- 1e. Stronger attraction between nucleus and <u>outer</u> e OR <u>outer</u> e closer to nucleus (ignore radius decreases)

Stage 2: Deviation $Be \rightarrow B$

- 2a. B lower than Be2b. Outer electron in (2)p2c. higher in energy than (2)s
- If AI vs Mg then do not award 2a or 2b

Stage 3: Deviation $N \rightarrow O$

3a. O lower than N3b. 2 electrons in (2)p need to pair3c. pairing causes repulsion (do not award if it is clear reference to repulsion is in s orbital)

If S vs P then do not award 3a or 3b

Q15.

(a) **M1**: P dissolved or put in/added to a solvent

M1: Allow named solvent eg water or methanol

1

[6]

M2: (injected through) a needle or nozzle or

capillary <u>and</u> at high voltage/4000 volts or high	
M2: Allow needle is positively charged	1
M3: Gains a proton / H+	
<i>M3</i> : Not atoms gain a proton <i>M3</i> : Could be scored from equation	
	1
$\mathbf{M4}: \mathbf{P} + \mathbf{H}^{+} \rightarrow \mathbf{PH}^{+}$	
Correct equation gains M3 and M4	
ignore state symbols	1
(b) 555	1
	1
(c) M1 V = d/t or = $1.22 \times 10^5 \text{ ms}^{-1}$	
Recail this equation	1
$m = \frac{2KE}{v^2} \text{or} \frac{2 \times 2.09 \times 10^{-15}}{(1.22 \times 10^5)^2}$	
or	
$m = \frac{2KE \times t^2}{d^2} \text{ or } \frac{2 \times 2.09 \times 10^{-15} \times (1.23 \times 10^{-5})^2}{1.50^2}$	
Rearrangement to give m	
	I
M3 m = $2.8(1) \times 10^{-25}$ (kg)	
	1
$\mathbf{M4} = 2.81 \times 10^{-25} \underline{\times L} = 0.169$	
M4: Allow M3 × L	1
ME 0.160 + 1000 - 160 (2)	-
$\frac{1}{M5} = \frac{1}{1000} = 109.(2)$ M5 : Allow M4 × 1000	
169 only scores 5 marks	
Allow answers to 2 significant figures or more ignore units	
	1

[1]

Q17.		
(a)	Assume current model unless otherwise stated.	
	Statement about the nucleus: (Central) nucleus contains protons <u>and</u> neutrons. <i>Allow "protons and neutrons are in the centre of the atom"</i>	1
	Statement about electrons Electrons are now arranged in energy levels/shells/orbitals Ignore "mostly empty space" Ignore electrons surround / orbit nucleus Allow additional statement about neutrons but must be separate from statement about nucleus to score e.g. no neutrons in plum pudding / neutrons now recognised	1
(b)	1s²2s²2p³ Ignore commas, capitals and subscripts Allow 1s²2s²2px¹2py¹2pz¹	
(c)	(R is N (nitrogen))	1
	Formula Be_3N_2 Accept Be_3R_2 only if stated $R = nitrogen$ Accept N_2Be_3	1 [4]
Q18.		
(a)	Cl ⁻ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	1
	Fe ²⁺ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ If [Ne] or [Ar] used then Max 1if both correct Ignore 4s ⁰ Allow subscripts	1
(b)	$Mn^{2+}(g) \rightarrow Mn^{3+}(g) + e^{-}$ States symbols are required Allow $Mn^{2+}(g) - e^{-} \rightarrow Mn^{3+}(g)$ Negative charge needed on electron	1
(c)	AI	

Mg then CE = 0

(d)	(Outer) electron in (3)p sublevel / orbital Not just level or shell Higher in energy / further from the nucleus so easier to remove OWTTE Both required for M3 Ignore shielding ⁵⁸ Ni ⁺ M1 needs mass and charge – allow subscripts A_{r} = [(58 × 61.0) + (60 × 29.1) + (61 × 9.9)] / 100 A_{r} = 58.9 must be to 1dp	1 1 1 1 1 1	[9]
Q19. B			[1]
Q20. D			[1]
Q21. (a)	$\frac{(46 \times 9.1) + (47 \times 7.8) + (48 \times 74.6) + (49 \times 8.5)}{100} = \frac{4782.5}{100}$ = 47.8 Correct answer scores 2 marks. Allow alternative methods. Allow 1dp or more. Ignore units	1	
(b)	$Ti(g) \rightarrow Ti^{+}(g) + e^{-}$ or $Ti(g) + e^{-} \rightarrow Ti^{+}(g) + 2e^{-}$ or $Ti(g) - e^{-} \rightarrow Ti^{+}(g)$ <i>State symbols essential Allow electrons without</i> ⁻ <i>charge shown.</i> 46	1	

1

1

1

1

1

- (c) $8.1(37) \times 10^{-26}$
- (d) M1 is for re-arranging the equation

$$d = t \sqrt{\frac{2E}{m}}$$
 or $d = \frac{t}{\sqrt{\frac{m}{2E}}}$ or $d^2 = t^2 \times \frac{2E}{m}$

Allow t a square root of m

$$\vec{d} = t_{47} \sqrt{\frac{2E}{47 \times 10^{-3} / L}} = t_{49} \sqrt{\frac{2E}{49 \times 10^{-3} / L}}$$

Or

d = 1.5(47)

This scores 2 marks Allow this expression for M2 $\frac{t_{47}}{\sqrt{47}} = \frac{t_{49}}{\sqrt{49}}$

$$= 9.6(14) \times 10^{-7}$$

Correct answer scores 3 marks.

[8]

Q22.

(a) ²⁴ Mg has 12n; ²⁵ Mg has 13n; ²⁶ Mg has 14n	
	OR They have different numbers of neutrons	1
(b) No difference in chemical properties	1
	Because all have the same electronic structure (configuration OR they have the same number of outer electrons	n)
(C) If fraction with mass $24 = x$ Fraction with mass $26 = 0.900 - x$	1
	Fraction with mass 25 = 0.100	1
	$A_{\rm r} = 24 {\rm x} + (25 \times 0.100) + 26(0.900 - {\rm x})$	

1

$$24.3 = 24x + 2.50 + 23.4 - 26x$$

$$2x = 1.60$$

$$x = 0.800 \text{ i.e. percentage } {}^{24}\text{Mg} = 80.0(\%) (80.0\% 3\text{sf})$$

$${}^{26}\text{Mg} = 0.900 - 0.800 = 0.100 \text{ ie percentage } {}^{26}\text{Mg} = 10.0(\%)$$
1
(d)
$$m = \frac{25/1000}{6.022 \times 10^{23}}$$
1
$$v^2 = 2\text{ke/m or } v^2 = \frac{2 \times (4.52 \times 10^{-16}) \times (6.022 \times 10^{23})}{25/1000}$$
1
$$V = \sqrt{2.18 \times 10^{10}} = 1.48 \times 10^{5} \text{ (ms}^{-1})$$
1
$$D = \text{vt} = 1.48 \times 10^{5} \times 1.44 \times 10^{-5}$$

$$D = 2.13 \text{ (m)}$$
1

[11]

[1]

Q23. B

Q24.
(a)
$$\frac{(82 \times 5) + (83 \times 3) + (84 \times 26) \times (86 \times 7)}{41} = \frac{3445}{41}$$
1
84.0
1
Kr
1
(b) $82/(1.243 \times 10^{-5})^2 = 86 / t^2$
So $t^2 = 86 / 82 \times (1.243 \times 10^{-5})^2$
1
 $t^2 = 1.6204 \times 10^{-10}$
1
 $t = 1.273 \times 10^{-5}$ (s)
1

[6]

Q25. C

[1]

1

1

1

Q26.

(a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	
	Allow correct numbers that are not superscripted	1
(b)	Ca(s)+ $2H_2O(I) \longrightarrow Ca^{2+}(aq) + 2OH^{-}(aq) + H_2(g)$ State symbols essential	1
(c)	Oxidising agent	1
(d)	Ca(g) → Ca⁺(g) + e- State symbols essential Allow 'e' without the negative sign	1
(e)	Decrease If answer to 'trend' is not 'decrease', then chemical error = $0/3$	1
	lons get bigger / more (energy) shells Allow atoms instead of ions	1
	Weaker attraction of ion to lost electron	1 [7]
-		

Q27.

(a)

Abundance of third isotope = $100 - 91.0 - 1.8 = 7.2\%$
$\frac{(32 \times 91) + (33 \times 1.8) + (y \times 7.2)}{100} = 32.16$
7.2y = 32.16 × 100 – 32 × 91 – 33 × 1.8 = 244.6
y = 244.6 / 7.2 = 33.97
y = 34 Answer must be rounded to the nearest integer

		1	
(b)	(for electrospray ionisation)		
	A high voltage is applied to a sample in a polar solvent	1	
	the sample molecule, M, gains a proton forming MH+	1	
	OR		
	(for electron impact ionisation)		
	the sample is bombarded by high energy electrons	1	
	the sample molecule loses an electron forming M ⁺	1	
(c)	lons, not molecules, will interact with and be accelerated by an electric field	1	
	Only ions will create a current when hitting the detector	1	[8]
Q28.			
(a)	[CH₃OCOCOOH]+ Allow names	1	
		1	
	Do not allow molecular formula	1	
(b)	Positive ions are accelerated by an electric field	1	
	To a constant kinetic energy	1	
	The positive ions with m / z of 104 have the same kinetic energy as those with m / z of 118 and move faster		
	Therefore, ions with m / z of 104 arrive at the detector first	1	
		•	[6]