Mark schemes

Q1.
(a) Current model includes: neutrons and protons

Rutherford model does not include neutrons and protons

Current model shows electrons in different energy levels/orbitals Rutherford model does not show electrons in different orbitals/energy levels
Allow 1st energy level only holds 2 electrons
(b) M1: ${ }^{112} \mathrm{Sn}^{+}$

M2 missing abundance $=30.84 \%$
M3
If M2 missing then allow M3 if denominator $=69.16$

RAM $=\frac{(112 \times 22.41)+(114 \times 11.78)+(117 \times 34.97)+(120 \times 30.84)}{100}$
1
M4 RAM = $\underline{116.5}$ answer must be to 1 dp
Allow M4 ecf

Q2.
D

$$
X(g)+H^{+} \rightarrow X H^{+}(g)
$$

Q3.
A
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$

Q4.
D

$$
{ }_{16}^{34} \mathrm{~S}
$$

Q5.

C
Silicon

Q6.
(a) Number of protons + neutrons (in the nucleus of the atom)

Do not allow reference to mass or average Ignore references to C-12 being 12
(b)

	Number of protons	Number of neutrons	Number of electrons
${ }^{46} \mathrm{Ti}$	22	24	22
${ }^{49} \mathrm{Ti}^{2+}$	22	27	20

Mark as rows
(c) Let ${ }^{49} \mathrm{Ti}$ be y

$$
\text { M1 } 47.8=\frac{(46 \times 2 y)+(47 \times 2 y)+(48 \times(100-5 y))+(49 \times y)}{100}
$$

Allow $(46 \times 2)+(47 \times 2)+(48 \times n)+49$
M1 $47.8=$ (5+n)

M2 5y = 20 OR $y=4$

$$
\text { M2 } 0.2 n=4 \text { or } n=20
$$

M3 abundance of ${ }^{46} \mathrm{Ti}=8 \%$

$$
\text { M3 } \%{ }^{46} \mathrm{Ti}=\frac{2}{25} \times 100=8 \%
$$

Q7.
C

$S e^{2-}$

Q8.
(a) The average mass of an atom of an element
(Weighted) average mass of all isotopes of an element

Compared to $1 / 12^{\text {th }}$ the mass of an atom of carbon-12

$$
=3615 / 43
$$

$$
=84.1
$$

M2 for answer to 1 decimal place 36.2 scores 1/2
(c) M1 $\mathrm{m}=(84 / 1000) / 6.02 \times 10^{23}\left(=1.395 \times 10^{-25} \mathrm{~kg}\right)$

Alternative method
M1: $m=(84 / 1000) / 6.02 \times 10^{23}\left(=1.395 \times 10^{-25}\right.$
kg)
M2 $\quad \mathrm{v}^{2}=2 \mathrm{ke} / \mathrm{m}=2 \times\left(4.83 \times 10^{-16}\right) /\left(1.395 \times 10^{-25}\right)$
M2: $d^{2}=2$ ke t^{2} / m
M3 $\quad v \quad=\sqrt{ }(6924731183)=83214.97$
M3: $d^{2}=2 \times\left(4.83 \times 10^{-16}\right) \times\left(1.73 \times 10^{-5}\right)^{2} / 1.395 \times$ $10^{-25} d^{2}=2.07$

M4 $\quad \mathrm{d} \quad=\mathrm{vxt}=83214.97 \times 1.72 \times 10^{-5}=1.43(\mathrm{~m})$
M4 = 1.44 (m)
Allow answers in range 1.43-1.44 m
If m not converted to kg , then $\mathrm{d}=0.045 \mathrm{~m}$ for $\max 3$

Q9.
D

$$
{ }^{4} L i
$$

Q10.
B

$$
1 s^{2} 2 s^{2} 2 p^{4}
$$

Q11.

(a) Average / mean mass of 1 atom (of an element)
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
If moles and atoms mixed, max $=1$
Mark top and bottom line independently. All key terms must be present for each mark.

OR
Average / mean mass of atoms of an element
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average / mean mass of atoms of an element $\times 12$ mass of one atom of ${ }^{12} \mathrm{C}$

OR
(Average) mass of one mole of atoms
$1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$
OR
(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average mass of an atom/isotope compared to/relative to $\mathrm{C}-12$ on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12

This expression $=2$ marks
(b) M1 $\%$ of ${ }^{50} \mathrm{Cr}$ and ${ }^{53} \mathrm{Cr}=13.9 \%$

Let $\%$ of ${ }^{53} \mathrm{Cr}=\mathrm{x} \%$ and Let $\%$ of ${ }^{50} \mathrm{Cr}=(13.9-\mathrm{x}) \%$
If x used for ${ }^{50} \mathrm{Cr}$ and ${ }^{53} \mathrm{Cr}$ or x and y, max 2 marks $=$
M1 and M4
Alternative M2
Let \% of ${ }^{53} \mathrm{Cr}=(13.9 \%-x) \%$ and $\%$ of ${ }^{50} \mathrm{Cr}=x \%$
$50(13.9-x)+(52 \times 86.1)+53(x)$
M2 $52.1=$
OR

$$
3 x=37.8
$$

$\frac{53(13.9-x)+(52 \times 86.1)+50 x}{100}$

$$
\text { M2 } 52.1=\quad 100
$$

OR
$3 x=3.9$

M3 $\quad x=\%$ of ${ }^{53} \mathrm{Cr}=12.6 \%$

M4 \% of ${ }^{50} \mathrm{Cr}=1.3 \%$
M4 = M1- M3
(c) M1 (Same) number of protons OR electrons

Do not allow same electronic configuration for M1

M2 (Different) number of neutrons
(d) M1 (Ions will interact with and) be accelerated (by an electric field)

Allow (ions) accelerated to a negative plate
Do not allow magnetic field

M2 Ions create a current when hitting the detector OR ions create a current in the detector/electron multiplier.

Allow (ions) can be detected
(e) M1 Mass of ion $=\underline{8.8 . \times 10^{-26}} \mathrm{~kg}$

M1 Mass of ion in kg

M2 Rearrangement
Alternative M2 ${ }^{v=\sqrt{\frac{2 K E}{m}}}$

M3: Calculating v by taking \sqrt{v}

M4 $\quad v=\frac{d}{t}$
M4: Recall of $v=d / t$

M5 $t=7.9(0) \times 10^{-7}(\mathrm{~s})$ (2sf or more)
M5: Calculating t

Alternative
M1 Mass of ion $=\underline{8.8 . \times 10^{-26}} \mathrm{~kg}$
Alternative

M1 Mass of ion in kg
1

M4 $\quad t^{2}=6.24 \times 10-13$
M4: Correct calculation to get t^{2}

M5 $t=7.9(0) \times 10^{-7}$ (s) (2sf or more)

Q12.
B
M3 $\quad \mathrm{t}^{2}=\frac{m d^{2}}{2 K E}$ OR $\frac{8.8 \times 10^{-26} \times 1.25^{2}}{2 \times 1.102 \times 10^{-13}}$
M3 Rearrangement

M5: Calculating t by taking square root of M4
 Allow answers consequential on incorrect M1 If mass in g calculated $=8.8 . \times 10^{-23}$, then $t=2.5 \times$ $10^{-5} \mathrm{~s}$ (4 marks)

Q13.

(a) (Sample is) dissolved (in a volatile solvent)

Allow named solvent (eg water/methanol)
(Injected through) needle/nozzle/capillary at high voltage/positively charged

Ignore pressure

Each molecule/particle gains a proton/ H^{+}
Allow M3 from a suitable equation (ignore state symbols)
Do not allow atoms gain a proton for M3
Ignore references to electron gun ionisation
Mark each point independently
(b) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~N}^{+} / \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{NH}^{+}$

Must be charged
(c) $\mathrm{Ge}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ge}+(\mathrm{g})+2 \mathrm{e}^{-}$

OR
$\mathrm{Ge}(\mathrm{g}) \rightarrow \mathrm{Ge}+(\mathrm{g})+\mathrm{e}^{-}$
State symbols essential
(d) $\quad \mathbf{M} 1 \mathrm{v}=$ length $/ \mathrm{t}=0.96 / 4.654 \times 10^{-6}$
$\mathrm{v}=206274 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{m}=2 \mathrm{KE} / \mathrm{v}^{2}$
M1 = working (or answer)

M2 mass of one ion $=1.146 \times 10^{-25} \mathrm{~kg}$
M2 = answer conseq on M1

M3 mass of 1 mole ions $=1.146 \times 10^{-25} \times 6.022 \times 10^{23}=(0.06901$ kg)

$$
M 3=M 2 \times 6.022 \times 10^{23}
$$

M4 = 69(.01) g
M4 = M3 $\times 1000$
M3/M4 could be in either order
1

1

1
M5 mass number $=69$
M5 must have whole number for mass no

Q14.

This question is marked using Levels of Response.
Level 3: ALL Stages with matching justifications
All stages are covered and the explanation of each stage is generally correct and virtually complete.

Answer is well structured with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms.

Level 2: TWO Stages with matching justifications OR THREE Stages with incomplete justifications.

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.

Answer shows some attempt at structure Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points.	
Some minor errors in use of technical terms.	

Indicative Chemistry Content

Stage 1: General Trend ($\mathbf{L i} \rightarrow \mathbf{N e}$)

1a. 1st IE increases
1b. More protons/increased nuclear charge
1c. Electrons in same energy level / shell
1d. No extra/similar shielding
1e. Stronger attraction between nucleus and outer e OR outer e closer to nucleus (ignore radius decreases)

Stage 2: Deviation $\mathrm{Be} \rightarrow B$

2a. B lower than Be
2b. Outer electron in (2)p
2c. higher in energy than (2)s
If Al vs Mg then do not award 2 a or 2 b

Stage 3: Deviation $\mathbf{N} \rightarrow \mathbf{O}$

3a. O lower than N
3b. 2 electrons in (2)p need to pair
3c. pairing causes repulsion (do not award if it is clear reference to repulsion is in s orbital)

If S vs P then do not award 3a or 3b

Q15.

(a) M1: P dissolved or put in/added to a solvent

M1: Allow named solvent eg water or methanol

M2: (injected through) a needle or nozzle or
capillary and at high voltage/4000 volts or high potential

M2: Allow needle is positively charged

M3: Gains a proton / H^{+}
M3: Not atoms gain a proton
M3: Could be scored from equation

M4: $\mathrm{P}+\mathrm{H}^{+} \rightarrow \mathrm{PH}^{+}$
Correct equation gains M3 and M4
Ignore state symbols
(b) 555
(c) $\quad \mathbf{M} 1 \mathrm{~V}=\mathrm{d} / \mathrm{t}$ or $=1.22 \times 10^{5} \mathrm{~ms}^{-1}$

Recall this equation

or

M3 m = $2.8(1) \times 10^{-25}(\mathrm{~kg})$
M3: Calculation of m.
$\mathbf{M 4}=2.81 \times 10^{-25} \underline{\mathrm{xL}}=0.169$
M4: Allow M3 $\times L$

M5 $0.169 \times 1000=169$.(2)
M5: Allow M4 × 1000
169 only scores 5 marks
Allow answers to 2 significant figures or more ignore units

Q16.
B

Q17.

(a) Assume current model unless otherwise stated.

Statement about the nucleus:
(Central) nucleus contains protons and neutrons.
Allow "protons and neutrons are in the centre of the atom"

Statement about electrons
Electrons are now arranged in energy levels/shells/orbitals
Ignore "mostly empty space"
Ignore electrons surround / orbit nucleus
Allow additional statement about neutrons but must be separate from statement about nucleus to score
e.g.
no neutrons in plum pudding / neutrons now recognised
(b) $1 s^{2} 2 s^{2} 2 p^{3}$

Ignore commas, capitals and subscripts
Allow $1 s^{2} 2 s^{2} 2 p x^{1} 2 p y^{1} 2 p z^{1}$
(c) $\quad(\mathrm{R}$ is N (nitrogen))

Formula $\mathrm{Be}_{3} \mathrm{~N}_{2}$
Accept $B e_{3} R_{2}$ only if stated $R=$ nitrogen
Accept $\mathrm{N}_{2} \mathrm{Be}_{3}$

Q18.
(a) $\mathrm{Cl}^{-} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
$\mathrm{Fe}^{2+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 p^{6} 3 \mathrm{~d}^{6}$
1

If [Ne] or [Ar] used then Max 1if both correct
Ignore $4 s^{0}$
Allow subscripts
(b) $\mathrm{Mn}^{2+}(\mathrm{g}) \rightarrow \mathrm{Mn}^{3+}(\mathrm{g})+\mathrm{e}^{-}$

States symbols are required
Allow Mn^{2+} (g) - $e^{-} \rightarrow \mathrm{Mn}^{3+}$ (g)
Negative charge needed on electron
(c) Al

Mg then $C E=0$
(Outer) electron in (3)p sublevel / orbital
Not just level or shell
1

1
Higher in energy / further from the nucleus so easier to remove OWTTE

Both required for M3
Ignore shielding
(d) $\quad{ }^{58} \mathrm{Ni}^{+}$

M1 needs mass and charge - allow subscripts
$A_{r}=[(58 \times 61.0)+(60 \times 29.1)+(61 \times 9.9)] / 100$
$A_{r}=58 . \underline{9}$ must be to 1 dp

Q19.
B

Q20.
D

Q21.
(a) $\frac{(46 \times 9.1)+(47 \times 7.8)+(48 \times 74.6)+(49 \times 8.5)}{100}=\frac{4782.5}{100}$
$=47.8$
Correct answer scores 2 marks.
Allow alternative methods.
Allow 1dp or more.
Ignore units

$$
=47.0
$$

-

(b) $\quad \mathrm{Ti}(\mathrm{g}) \rightarrow \mathrm{Ti}^{+}(\mathrm{g})+\mathrm{e}^{-}$
or $\mathrm{Ti}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ti}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$
or $\mathrm{Ti}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Ti}+(\mathrm{g})$
State symbols essential
Allow electrons without - charge shown.
(c) $8.1(37) \times 10^{-26}$
(d) M 1 is for re-arranging the equation
$d=t \sqrt{\frac{2 E}{m}} \quad$ or $\quad d=\frac{t}{\sqrt{\frac{m}{2 E}}} \quad$ or $\quad d^{2}=t^{2} \times \frac{2 E}{m}$
Allow $t a$ square root of m
1
$=9.6(14) \times 10^{-7}$
Correct answer scores 3 marks.

Q22.
(a) ${ }^{24} \mathrm{Mg}$ has $12 \mathrm{n} ;{ }^{25} \mathrm{Mg}$ has $13 \mathrm{n} ;{ }^{26} \mathrm{Mg}$ has 14 n

OR They have different numbers of neutrons
(b) No difference in chemical properties

Because all have the same electronic structure (configuration)
OR they have the same number of outer electrons
(c) If fraction with mass $24=\mathrm{x}$

Fraction with mass $26=0.900-\mathrm{x}$
Fraction with mass $25=0.100$
$A_{r}=24 \mathrm{x}+(25 \times 0.100)+26(0.900-\mathrm{x})$
$24.3=24 x+2.50+23.4-26 x$
$2 \mathrm{x}=1.60$
$x=0.800$ i.e. percentage ${ }^{24} \mathrm{Mg}=80.0(\%)(80.0 \% 3 \mathrm{sf})$

Q23.
B
$\mathrm{D}=\mathrm{vt}=1.48 \times 10^{5} \times 1.44 \times 10^{-5}$
$\mathrm{D}=2.13(\mathrm{~m})$
(d) $\mathrm{m}={ }^{25 / 1000} / 6.022 \times 10^{23}$
$\mathrm{v}^{2}=2 \mathrm{ke} / \mathrm{m}$ or $\mathrm{v}^{2}=\frac{2 \times\left(4.52 \times 10^{-16}\right) \times\left(6.022 \times 10^{23}\right)}{25 / 1000}$
$V=\sqrt{2.18 \times 10^{10}=1.48 \times 10^{5}\left(\mathrm{~ms}^{-1}\right)}$

Q24.
(a) $\frac{(82 \times 5)+(83 \times 3)+(84 \times 26) \times(86 \times 7)}{41}=\frac{3445}{41}$
84.0

Kr
(b) $82 /\left(1.243 \times 10^{-5}\right)^{2}=86 / t^{2}$

So t ${ }^{2}=86 / 82 \times\left(1.243 \times 10^{-5}\right)^{2}$
$t^{2}=1.6204 \times 10^{-10}$
$\mathrm{t}=1.273 \times 10^{-5}(\mathrm{~s})$

Q25.

C

Q26.
(a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$

Allow correct numbers that are not superscripted
(b) $\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

State symbols essential
(c) Oxidising agent
(d) Ca (g) $\longrightarrow \mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-}$

State symbols essential
Allow 'e' without the negative sign
(e) Decrease

If answer to 'trend' is not 'decrease', then chemical error $=0 / 3$

Ions get bigger / more (energy) shells
Allow atoms instead of ions

Weaker attraction of ion to lost electron

Q27.
(a) Abundance of third isotope $=100-91.0-1.8=7.2 \%$

```
(32\times91)+(33\times1.8)+(y\times7.2)
```

$7.2 y=32.16 \times 100-32 \times 91-33 \times 1.8=244.6$
$y=244.6 / 7.2=33.97$
$y=34$
Answer must be rounded to the nearest integer
(b) (for electrospray ionisation)

A high voltage is applied to a sample in a polar solvent

OR
(for electron impact ionisation)
the sample is bombarded by high energy electrons
the sample molecule loses an electron forming M^{+}
(c) Ions, not molecules, will interact with and be accelerated by an electric field

Only ions will create a current when hitting the detector

Q28.
(a) $\left[\mathrm{CH}_{3} \mathrm{OCOCOOH}\right]^{+}$

Allow names
$\left[\mathrm{CH}_{3} \mathrm{OCOCOOCH} 3\right]^{+}$
Do not allow molecular formula
(b) Positive ions are accelerated by an electric field

To a constant kinetic energy

The positive ions with m / z of 104 have the same kinetic energy as those with m / z of 118 and move faster

Therefore, ions with m/z of 104 arrive at the detector first

